
in press     |     The Philippine Journal of Fisheries

Dasgupta / The Philippine Journal of Fisheries 32(2): in press

Influence of Water Hardness on Tissue Physiology of Freshwater Fish 
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A B S T R A C T

 Fishes endemic to freshwater habitat are strongly influenced by water hardness, initiating physiological 
changes. The present study aimed to understand the effects of a four-fold sequential increase from soft to hard 
waters on selected tissues of Koi carp, a commercially valued ornamental freshwater fish. Secondary stress 
markers, Glucose, Oxidative Stress (Malondialdehyde (MDA)/Lipid Peroxidation (LPO) and Antioxidants 
(Catalase (CAT)), Glutathione-S-Transferase (GST), and Glutathione (GSH) were quantified in gill and white 
muscle (hereafter referred as muscle) after 14 days of exposure to soft waters of 75 mg CaCO3/L (TS), moderately 
hard waters of 150 mg CaCO3/L (TM), hard waters of 225 mg CaCO3/L (TH), and very hard waters of 225 mg 
CaCO3/L (TV). Both the examined tissues were distinctly affected by soft and moderate waters. Glucose in gills 
(p < 0.05) was proportional to the rise in hardness levels. Soft, moderate, and very hard waters (75, 150, and 300 
mg CaCO3/L) affected gills and muscle due to elevated MDA (p < 0.05). CAT and GST provided considerable 
antioxidant protection to the tissues. Conclusively, results revealed tissue-specific differential responses and 
suitability of holding water hardness approximating 225 mg CaCO3/L.
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1 .  I N T R O D U C T I O N

Hardness is perhaps the most significant 
physicochemical property of water because 
it directly or indirectly influences the 

osmoregulatory efficiency of fishes (Copatti and 
Baldisserotto 2021). Aquatic environments are 
constituted by varying hardness, mainly due to 
Calcium (Ca2+) and Magnesium (Mg2+), along with 
some trace cations (Zn2+, Mn2+, etc.) (Baldisserotto 
2011; Romano et al. 2020). Based on the quantity of 
major cations, water is classified into soft water (< 
75 mg CaCO3/L) and hard water (> 75 mg CaCO3/L) 
(Portz et al. 2006), both of which exert biological 
challenges. Soft water poses challenges to the survival 
of fish, causing efflux across ion channels and 
destabilising ionic balance, while excessive hardness 
can cause hypercalcemia (Wendelaar Bonga et al. 
1983), leading to bone ossification (Blanksma et al. 

2009; Copatti and Baldisserotto 2021). It is, therefore, 
quite clear that water hardness leads to physiological 
changes that can potentially alter the biochemistry of 
fishes. Without doubt, such changes can be studied 
through tissues that are largely impacted due to 
their contact with hardness (Gonzalez et al. 1998; 
Gundersen and Curtis 1995). 

Gill and muscle have provided substantial 
information about adaptation to water hardness 
in freshwater species such as Pinfish (Lagodon 
rhomboides) and Mozambique Tilapia (Oreochromis 
mossambicus) (Carrier and Evans 1976; Flik and 
Verbost 1995; Wendelaar Bonga et al. 1983). While 
gills are the epicentre of Ca2+ homeostasis and 
osmoregulation (Evans et al. 2005; Wendelaar Bonga 
et al. 1983), muscle is susceptible to changes in 
constituent amino acids and ionic shifts due to water 
hardness (Buentello and Gatlin 2002). The tendency 
of muscle mitochondria to take up Ca2+ from external 
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sources and compensate for ionic stress has been 
reported in Mozambique tilapia (Sulochana et al. 
1977). Both tissues localize various redox reactions, 
and such biomarker examinations provide information 
about physiological adjustments due to hard waters 
(Lushchak 2011).

Secondary stress biomarkers are 
instrumental in assessing the effects of hard and soft 
waters. Reports by Copatti et al. (2019a) and Neves 
et al. (2017) highlight glucose usage to evaluate 
the effects of water hardness. Malondialdehyde 
(MDA) is a marker of Lipid Peroxidation (LPO), the 
consequences of which are prevented by enzymatic 
antioxidants (Catalase, Glutathione-S-Transferase) 
or non-enzymatic (Glutathione), thereby rectifying 
the prooxidant/antioxidant ratio (Betteridge 2000; 
Lushchak 2016). Catalase is an important antioxidant 
enzyme that protects cells and tissues from oxidative 
damage because it reduces harmful hydrogen peroxide 
(H2O2) to water (H2O) (Betteridge 2000). The activity 
of GST is specific to the detoxification of xenobiotics. 
It conjugates GSH to various electrophiles, thereby 
preventing oxidative damage, although GSH 
can also independently scavenge free radicals to 
defend the tissues from stress (Srikanth et al. 2013). 
Despite broad insights offered by all the above, it is 
noteworthy that investigations involving its usage 
have gained momentum recently (Copatti et al. 2019b; 
Michelotti et al. 2018) to understand the extent and 
efficiency of physiological adaptations due to external 
hardness. Relevant information about the evaluation 
of secondary markers can make way for further 
molecular insights.
 Koi carp, a commercially valued ornamental 
freshwater carp species, is popular among aquarists 
for its aesthetic features. The species has a distinct 
barbel, a major identifying feature that differentiates 
it from the closely related Goldfish (Supplementary 
Material S1) (Thomas 2021; Balon 2004; Kailola et 
al. 1993). Popularly seen in almost all domesticated 
ponds, aquariums, reservoirs, streams, and lakes, it 
is physiologically a very sturdy species even under 
captive conditions (Balon 2004; Liu et al. 2024a; Liu 
et al. 2024b; Fife-Cook and Franks 2021; Maître-
Allain and Piednoir 1995). Data involving oxidative 
stress response and glucose fluctuations due to water 
hardness will boost the culture of Koi carps and can be 
applicable in general to the carp family. Therefore, this 
report aims to evaluate the effects of different levels of 
water hardness (75, 150, 225, and 300 mg CaCO3/L) on 
biomarkers (glucose, oxidative stress, and antioxidant 
profile) in the gill and muscle of Koi carp.

2 .  M A T E R I A L S  A N D  M E T H O D S

2.1 Acclimation and pre-exposure maintenance

 Juveniles (6.70 ± 0.15 g; 5.90 ± 0.12 cm) 
were procured from the Ornamental Fish Research 
Centre (Bengaluru, Karnataka). They were randomly 
distributed in separate glass tanks marked as stocking 
tanks (8 tanks; 50 L each; 5 fish/tank). Fish were 
acclimated for two weeks under natural photoperiod 
(≈ 12 Light/12 Dark) with continuous aeration (Venus 
Aqua AP-608A, China) and thermostat (RS Electrical 
RS008A, China). They were fed twice a day (09:00 and 
18:00) at 2% body weight with commercial feed pellets 
(Taiyo Grow, India).

2.2 Experimental setup

The two-week study consisted of four levels 
of hardness: 75 (Soft - TS), 150 (Moderate - TM), 
225 (Hard - TH), and 300 (Very Hard - TV) mg 
CaCO3/L, based upon occurrence in natural systems 
(Stumm and Morgan 1996; Portz et al. 2006; Boyd 
et al. 2016; Pinheiro et al. 2021). The hardness of TS 
and TM was maintained by reverse osmosis (RO) 
treated water. The remaining levels were adjusted 
with Calcium carbonate (CaCO3 dilutions in HCl), 
eventually calibrated by complexometric EDTA 
titration (American Public Health Association 
2005). Prepared concentrations concluded with the 
following range: TS (74 - 77); TM (148 - 152); TH (223 
- 238), and TV (298 - 304). Experimental tanks were 
maintained in triplicate under a static-renewal system, 
with randomly assigned acclimated fish. Toxicity due 
to accumulated faeces was prevented by drainage and 
renewal on alternate days (≈ 10% replacement). Tanks 
were covered with a mesh net to prevent the escape of 
fish. Water parameters were monitored every 48 hours 
for temperature (25.1 ± 1°C), pH (7.04 ± 0.1), dissolved 
oxygen (6.5 ± 0.08 mg/L), and alkalinity (213 ± 0.02 
mg/L) (American Public Health Association 2005).

2.3 Sampling

A total of 24 individuals (2 fish × 3 tanks 
× 4 hardness levels) were euthanized in clove oil 
solution (50 μl/L) (American Veterinary Medical 
Association 2020; CPCSEA 2021) and dissected for 
muscle and gill. Tissues were washed with ice-cold 
phosphate buffer (0.1 M; pH 7.4) and homogenised 
in a Potter-Elvehjem grinder. The homogenate (10% 
w/v) was centrifuged at 5000 × g, following which 
the supernatant (stored at -20°C) was retained for all 
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assays except Glutathione (homogenate precipitated 
with TCA before centrifugation). Absorbance values 
were measured with a spectrophotometer (Systronics 
UV-VIS 118, India).

2.4 Biochemical analyses

2.4.1 Glucose

Glucose was assayed according to Nelson 
(1944) and Somogyi (1952). The deproteinizing agent 
(Ba(OH)2 and ZnSO4) was added to the supernatant 
and centrifuged at 5000 × g for 10 minutes. Alkaline 
copper reagent (potassium-sodium tartrate; Na2CO3; 
NaHCO3, and Na2SO4 in distilled water) was added 
to the supernatant. The mixture was heated, followed 
by the addition of an arseno-molybdate reagent. The 
optical density of the solution was recorded at 540 
nm. Standard glucose concentration (1 mg/ml) was 
correlated with the sample.

2.4.2 Malondialdehyde (MDA)

Secondary product of Lipid peroxidation 
(LPO) - Malondialdehyde was estimated by the protocol 
of Niehaus and Samuelsson (1968). The supernatant 
was mixed with this TCA-TBA-HCl reagent (15% 
Trichloroacetic acid, 0.38% Thiobarbituric acid, and 
0.25N Hydrochloric acid) in the ratio of 1:2. This 
reaction mixture was heated in a boiling water bath 
for 15 minutes, cooled, and centrifuged at 1100 × g 
for 5 minutes. The optical density of the solution was 
recorded at 535 nm. MDA was calculated using an 
extinction coefficient of 1.56 × 105 M–1 cm.

2.4.3 Catalase (CAT)

Catalase activity was measured according to 
the protocol of Aebi (1984). The reaction was started 
by adding supernatant to an equimolar solution 
of H2O2 and phosphate buffer (50 mM; pH 7.1). A 
decrease in absorbance was continuously recorded at 
240 nm (UV) for an incubation time of 3 minutes. The 
difference in absorbance between the initial and final 
points was computed for the activity.

2.4.4 Glutathione-S-Transferase (GST)

GST activity was estimated by using the 
protocol by Habig et al. (1974). Reaction mixture 
contained supernatant, phosphate buffer (0.1 M; pH 
6.5), and 2,4-Dinitrochlorobenzene (30 mM). Volume 
was adjusted with distilled water, after which the 

reaction was initiated by adding Glutathione (0.1 M). 
Optical density of the solution was recorded at 340 nm 
using a molar extinction coefficient of 9.6 × 103M–1 
cm–1.

2.4.5 Glutathione (GSH)

GSH was estimated according to the protocol 
by Moron et al. (1979) protocol. Homogenate was 
precipitated with TCA (5%) and centrifuged at 3000 
× g for 10 minutes. The supernatant collected after 
centrifugation was then added to the phosphate buffer 
(pH 6.5) and Ellman’s reagent. The optical density of 
the solution was recorded at 420 nm.

2.4.6 Total protein

Total protein content was estimated 
according to the Lowry et al. (1951) protocol. Bovine 
serum albumin was used as a standard. The optical 
density of the supernatant-reagents mixture was 
recorded at 660 nm.

3 .  D A T A  A N A L Y S I S

 Data was summated as Mean ± SE. 
Normality and homoscedasticity were evaluated 
using the Shapiro–Wilk and Levene tests, respectively. 
Inter-group comparisons were performed using One-
way ANOVA, followed by a post-hoc test (Tukey). 
Significant differences were fixed at 95 % (p < 0.05). 
GraphPad Prism (Version 5.0, USA) and JASP 
(Version 0.16.2, Netherlands) were used for statistical 
computation and visual presentations.

4 .  R E S U L T S

4.1 Mortality

There was no mortality throughout the 
exposure period of 14 days. However, physical 
exhaustion was apparent at the time of sampling in the 
TS- and TM-exposed fish.

4.2 Biomarkers in gill

 The glucose concentration increased 
progressively from TS to TV. Significant differences 
(F = 10.91; p < 0.05) were found between TV and 
the remaining treatments (Figure 1A; Table 1). Soft 
waters showed elevated MDA, followed by a spike 
in TV. Only TH differed significantly (F = 21.27; p 
< 0.001) from the remaining treatments (Figure 2A; 
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Figure 1 – Effect of 75 (TS), 150 (TM), 225 (TH), and 300 (TV) 
mg CaCO3/L water hardness on Glucose concentration in (A) Gill 
and (B) Muscle of Koi carps. ANOVA descriptions: Non-identical 
superscript indicates statistical significance between groups (p < 
0.05); At least one identical superscript indicates non-significance 
(p > 0.05) between groups.

Figure 2 – Effect of 75 (TS), 150 (TM), 225 (TH), and 300 (TV) mg 
CaCO3/L water hardness on MDA in (A) Gill and (B) Muscle of Koi 
carps. ANOVA descriptions: Non-identical superscript indicates 
statistical significance between groups (p < 0.05); At least one 
identical superscript indicates non-significance (p > 0.05) between 
groups.

Table 1). The highest antioxidant Catalase activity 
was observed for TH, which differed significantly (F 
= 50.26; p < 0.001) from TS, TM, and TV. Also, TV 
differed significantly from TM and TS (F = 50.26; p 
< 0.001) (Figure 3A; Table 1). GST activity for TH 
and TV was comparatively higher than for TS and 
TM. While no significant differences (F = 26.45; p > 
0.05) were found between the low (TS and TM) and 
high hardness groups (TH and TV), differences were 
observed between treatment pairs (Figure 4A; Table 
1). The highest concentration of GSH was recorded 
for TV. Except for TS, which was not significant (F 
= 42.78; p > 0.05) with TM and TH, the remaining 
treatments recorded intergroup differences (Figure 
5A; Table 1).

5 .  D I S C U S S I O N

5.1 Effect of hardness on glucose concentration

 In the present study, glucose increased 
sequentially in gills, indicating that it was more 
conserved at higher levels of hardness. Progressive 
hardness led to an increase in glucose, probably 
adding to the energy reserves. Since glucose serves 
as a primary energy for metabolism (Carragher and 
Rees 1994; da Santa Lopes et al. 2023), its estimation 

Figure 3 – Effect of 75 (TS), 150 (TM), 225 (TH), and 
300 (TV) mg CaCO3/L water hardness on Catalase 
activity in (A) Gill and (B) Muscle of Koi carps. 
ANOVA descriptions: Non-identical superscript 
indicates statistical significance between groups (p < 
0.05); At least one identical superscript indicates non-
significance (p > 0.05) between groups.
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Figure 4 – Effect of 75 (TS), 150 (TM), 225 (TH), and 
300 (TV) mg CaCO3/L water hardness on activity of 
GST in (A) Gill and (B) Muscle of Koi carps. ANOVA 
descriptions: Non-identical superscript indicates 
statistical significance between groups (p < 0.05); At least 
one identical superscript indicates non-significance (p > 
0.05) between groups.

Figure 5 – Effect of 75 (TS), 150 (TM), 225 (TH), and 
300 (TV) mg CaCO3/L water hardness on Glutathione 
concentration in (A) Gill and (B) Muscle of Koi carps. 
ANOVA descriptions: Non-identical superscript 
indicates statistical significance between groups (p < 
0.05); At least one identical superscript indicates non-
significance (p > 0.05) between groups.

TS       TM      TH      TV

GILL

   *GLU 2.75 ± 0.30 b 3.15 ± 0.25 b 3.50 ± 0.10 b 4.42 ± 0.16 a

   †MDA 1.50 ± 0.18 b 1.29 ± 0.12 b  0.34 ± 0.01a 1.45 ± 0.07 b

   ‡CAT 5.35 ± 0.71c 3.93 ± 0.86 c 11.25 ± 0.24 a 1.47 ± 0.22 b

   §GST 0.07 ± 0.02 b 0.05 ± 0.006 b  0.24 ± 0.007 a 0.20 ± 0.02 a

   ¶GSH 4.55 ± 0.33 b c 7.11 ± 0.65 c 3.42 ± 0.15 b 14.47 ± 1.32 a

MUSCLE

  *GLU 2.17 ± 0.11 b 3.30 ± 0.12 a 3.40 ± 0.10 a 2.20 ± 0.20 b

  †MDA 0.72 ± 0.07 b 1.45 ± 0.06 a 0.34 ± 0.09 c 0.38 ± 0.08 b c

   ‡CAT 10.62 ± 0.45 b 14.65 ± 1.04 a 7.94 ± 0.15 c 4.89 ± 0.26 d

  §GST 0.04 ± 0.007 b 0.16 ± 0.004 a 0.18 ± 0.01 a 0.10 ± 0.004 c

  ¶GSH 3.80 ± 0.72 b 6.60 ± 0.17 a 4.80 ± 0.30 b 4.11 ± 0.25 b

Table 1 – Data set (Mean ± SE) of Glucose (*GLU), Oxidative stress (†MDA) and Antioxidant profile (‡CAT - Catalase, §GST - Glutathione-
S-Transferase, ¶GSH - Glutathione) in Gill and Muscle of Koi carps exposed to 75 (TS), 150 (TM), 225 (TH) and 300 (TV) mg CaCO3/L of 
water hardness. Units expressed as: Glucose (mg/ml), MDA (mM MDA/mg protein), Catalase (µ moles H2O2 hydrolyzed/min/mg protein), 
GST (mmoles CDNB conjugated/mg protein), and GSH (mmol/ml). ANOVA descriptions: Non-identical superscript indicates statistical 
significance between groups (p < 0.05); At least one identical superscript indicates non-significance (p > 0.05) between groups.
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can provide insights into the energy consumption for 
adaptations to hardness. Freshwater fish take up Ca2+ 
through the gills, and this transcellular movement is 
dependent on the surrounding Ca2+ concentrations, 
which affect the branchial permeability of the gills 
(Flik and Verbost 1995). Generally, an environment 
with high hardness reduces gill permeability (through 
tightening cellular junctions) and subsequent loss 
of ions to water, ultimately conserving energy 
(Golombieski et al. 2013). This is clear through the 
results of the present study. Contrarily, muscle showed 
reductions in glucose at TV (300 mg CaCO3/L), 
which was also observed in juvenile Common Snook 
(Centropomus undecimalis) exposed to elevated 
hardness (Michelotti et al. 2018). Probably, increased 
energy demands lowered muscle glucose levels and 
upregulated glycolysis.

5.2 Effect of hardness on lipid peroxidation 

The presence of enormous amounts of 
Polyunsaturated Fatty Acids (PUFAs) predisposes 
fishes to peroxidation, ultimately damaging the cell 
membrane (Lushchak 2011), which is proportional 
to MDA. In the present study, excluding 225 mg 
CaCO3/L, MDA for the remaining exposures was 
elevated in the gills. Soft (75), moderate (150), and very 
hard (300) waters quite possibly led to damage to the 
gills. In environments with low ionic concentration, 
certain membranes (such as the apical membrane 
of the gill) mechanize the uptake of divalent cations 
from hard waters through Ca2+ channels embedded 
in them to meet the demand for necessary biological 
processes (Limbaugh et al. 2021). Presumably, this 
leads to a burden on the tissues, causing membrane 
damage and cell injury as indicated by elevated 
MDA. Further, interaction of pH and hardness 
might provoke peroxidation (Copatti et al. 2019b; 
Diggs and Parker 2009; McWilliams and Potts 1978; 
Parker et al. 1985). Hard waters dynamically affect 
pH due to higher cationic levels, cascading buffering 
action. Contrarily, soft waters (lower cations) favour 
acidification; therefore, pH in soft water adversely 
affects fishes (Boyd 1998; Townsend et al. 2003; 
Townsend and Baldisserotto 2001). This plausibly 
impacts tissue physiology and aggravates oxidative 
stress, as evidenced by elevated MDA in Koi exposed 
to TS and TM.

5.3 Effect of hardness on antioxidant response

Low Catalase activity in gills exposed to soft 
(75) and moderate (150) waters indicated the failure 

to prevent oxidative damage. As already known, low 
ionic composition of freshwater environments is 
osmotically taxing for gills due to loss of ions to water 
(Hunn 1985; McDonald and Robinson 1993). The 
efflux of ions to the external environment in hardness 
< 150 mg CaCO3/L might have led to oxidative stress 
in Koi carps. A noteworthy observation in gill is the 
sharp increase in Catalase activity at hard waters (225), 
which indicates adaptive efficiency of Koi carps at this 
concentration. Contrarily, muscle showed a sequential 
decrease in antioxidant activity with exposures above 
150 mg CaCO3/L, largely remaining unaffected. 
Given the elevated expression of Catalase at moderate 
exposures (TM), it proves that antioxidative activity 
was more robust in muscle than in gill.

Increase in GST activity was observed in 
gills exposed to hard (225) and very hard waters 
(300). On the contrary, muscle showed elevated GST 
activity for all the exposures except soft waters (75). 
Though higher GST activity clearly indicated greater 
antioxidant capacity in both the tissues, by far, the 
antioxidative response was greater in muscle than 
in gills. Also, compared to Catalase, GST activity 
was much higher in both the tissues for exposures 
above 225 mg CaCO3/L, indicating better antioxidant 
activity at higher levels of water hardness.

Antioxidant GSH was relatively lower 
in muscle than in gills, indicating better muscle 
antioxidant capacity.  In gills, a spike was observed 
for TH, which is conclusive that anything beyond 
300 mg CaCO3/L is harmful. GSH can scavenge free 
radicals independently or in conjunction with GST 
to provide antioxidant defence (Srikanth et al. 2013). 
The present study showed variance in GSH for both 
tissues, conforming to its specificity or tissue-specific 
antioxidant response. This has previously been 
reported in other popular freshwater species such 
as Nile Tilapia (Oreochromis niloticus), Sharp Tooth 
Catfish (Clarias lazera) and Common carp (Cyprinus 
carpio) (Hamed et al. 2004).

6 .  C O N C L U S I O N
In conclusion, hardness of 75 and 150 

mg CaCO3/L can lower glucose reserves and cause 
oxidative stress in the tissues of Koi carps. On the 
contrary, the fish can efficiently adapt to 225, rather 
than 300 mg CaCO3/L. At such hardness, glucose was 
also found to be conserved, a feature that metabolically 
benefits the carps and might be useful for aquaculture.
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Supplementary Material S1. Test species - Cyprinus carpio var koi.
 indicate barbel, a distinct morphological feature


